Euler buckling-induced folding and rotation of red blood cells in an optical trap.
نویسندگان
چکیده
We investigate the physics of an optically driven micromotor of biological origin. When a single, live red blood cell (RBC) is placed in an optical trap, the normal biconcave disc shape of the cell is observed to fold into a rod-like shape. If the trapping laser beam is circularly polarized, the folded RBC rotates. A model based on geometric considerations, using the concept of buckling instabilities, captures the folding phenomenon; the rotation of the cell is rationalized using the Poincaré sphere. Our model predicts that (i) at a critical power of the trapping laser beam the RBC shape undergoes large fluctuations, and (ii) the torque that is generated is proportional to the power of the laser beam. These predictions are verified experimentally. We suggest a possible mechanism for the emergence of birefringent properties in the RBC in the folded state.
منابع مشابه
A Biophotonic Study of Live, Flowing Red Blood Cells in an Optical Trap
We investigate the physics of an optically trapped red blood cell under physiological conditions. When a single, live red blood cell, is placed in an optical trap, the normal biconcave disk shaped cell is observed to undergo a folding action and thereby take up a rod like shape. If such an RBC has any shape anisotropies due to perturbation through malarial infection or hyperosmotic stress, it i...
متن کاملmeasuring viscoelastic properties of Red Blood Cell using optical tweezers
Efforts have been made to study the behavior of complex materials in micrometer dimensions with various techniques. One of these methods is the use of optical tweezers for biophysical applications. Red blood cells, as the most abundant blood-forming cells, play an important role in the life of living organisms, and their unique mechanical properties are important. In this report, the study of s...
متن کاملFrom Polymers to Membranes: Elastic Properties of Red Blood Cells
Recently experiments have been conducted to investigate the behavior of live human red blood cells under optical forces generated using both linearly and circularly polarized light [1, 2]. These experiments have shown that a normal human RBC, which has a biconcave disk shape, approximately 8 μm in diameter, deforms into a folded shape upon being placed in an optical trap; the trapped RBC subseq...
متن کاملMeasuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping.
A laser-based method has been developed for experimentally probing single red blood cell (RBC) buckling and determining RBC membrane rigidity. Our method combines a liquid flow cell, fluorescence microscopy, and an optical-trap to facilitate simple measurements of the shear modulus and buckling properties of single RBCs, under physiological conditions. The efficacy of the method is illustrated ...
متن کاملTorque-generating malaria-infected red blood cells in an optical trap.
We have used optical tweezers to trap normal and Plasmodiuminfected red blood cells (iRBCs). Two different facets of the behavior of RBCs in infrared light fields emerge from our experiments. Firstly, while the optical field modifies both types of RBCs in the same fashion, by folding the original biconcave disk into a rod-like shape, iRBCs rotate with linearly polarized light whereas normal RBC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical biology
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2006